PCOS, Hashimoto's disease, celiac disease, endometriosis - genetically conditioned autoimmune disorder causing infertility?
pdf

Keywords

policystic ovary syndrome
Hashimoto's disease
celiac disease

How to Cite

Jankowska, K., & Kaźmierczak-Dejewska, A. (2021). PCOS, Hashimoto’s disease, celiac disease, endometriosis - genetically conditioned autoimmune disorder causing infertility? . Quarterly Journal Fides Et Ratio, 47(3), 110-129. https://doi.org/10.34766/fetr.v47i3.922
Keywords

Abstract

Infertility is a social problem today. The causes of infertility can be both on the side of the woman and on the side of the man. One of the most common causes of infertility in women is polycystic ovary syndrome (PCOS). It has been proven that it often coexists with autoimmune thyroiditis (AIT), i.e. with Hashimoto's disease. In many patients with PCOS and AIT, endometriosis and celiac disease are also found. It seems that these disorders: PCOS, AIT, endometriosis and celiac disease may have a common autoimmune basis. More and more patients with infertility or recurrent miscarriages have autoimmune problems. Probably a genetic predisposition is necessary to reveal the disease.

https://doi.org/10.34766/fetr.v47i3.922
pdf

References

Acerini, CL, Ahmed, ML, Ross, KM, Sullivan, PB, Bird, G., Dunger, DB (1998) Coeliac disease in children and adolescents with IDDM: clinical characteristics and response to gluten-free diet, Diabetic Medicine, 15, 38–44, https://doi.org/10.1002/(sici)1096-9136(199801)15:1%3C38::aid-dia520%3E3.0.co;2-l.

Alawad, A., Altuwaijri, S., Aljarbu, A., Kryczek, I., Niu, Y., Al-sobayil, FA, Chang, C., Bayoumi, A., Zou, W., Rudat, V., Hammad, M. (2015). Depletion of androgen receptor (AR) in mesenchymal stem cells (MSCs) inhibits induction of CD4+CD25+FOX3+ regulatory T (Treg) cells via androgen TGF-β interaction., Journal of Applied Biomedicine, 13 (4), 263-271, https://doi.org/10.1016/j.jab.2015.06.002.

Albaghdadi, A.J.H., Feeley, C.A., Kan, F.W.K. (2019). Low-Dose Tacrolimus Prevents Dysregulated Peri-Conceptional Ovarian and Systemic Immune Cellular Homeostasis in Subjects with PCOS., Scientific Reports, 9 [on-line], www.nature.com/scientificreports [access: 10.07.2021], https://doi.org/10.1038/s41598-019-42960-x.

Albaghdadi, A.J.H., Kan, F.W.K. (2021). Therapeutic Potentials of Low-Dose Tacrolimus for Aberrant Endometrial Features in Polycystic Ovary Syndrome, International Journal of Molecular Sciences, 22, 2872. https://doi.org/10.3390/ijms22062872.

Angstwurm, M.W., Gärtner, R., Ziegler-Heitbrock, H. (1997). Cyclic plasma IL-6 levels during normal menstrual cycle, Cytokine, 9 (5), 370-374, https://doi.org/10.1006/cyto.1996.0178.

Auer, K., Bachmayr-Heyda, A., Sukhbaatar, N., Aust, S., Schmetterer, KG, Meier, SM, Gerner, C., Grimm, C., Horvat, R., Pils, D. (2016). Role of the immune system in the peritoneal tumor spread of high grade serous ovariancancer, Oncotarget, https://doi.org/10.18632/oncotarget.11038.

Ayse, A., Bercem, A.D., Bilmez, S., Imga Nasiroglu, N., Mazhar Tuna, M.M., Isik, S., Berker, D., Guler, S. (2015). High prevalence of Hashimoto’s thyroiditis in patients with polycystic ovary syndrome: does the imbalance between estradiol and progesterone play a role? Endocrine Research, 40 (4), 204-210, https://doi.org/10.3109/07435800.2015.1015730.

Burchill, M.A., Yang, J.; Vogtenhuber, C.; Blazar, B.R.; Farrar, M.A. (2007). IL-2 receptor beta- dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells, Journal of Immunology, 178, 280–290, https://doi.org/10.4049/jimmunol.178.1.280.

Cadagan, D., Khan, R., Amer, S., (2016). Thecal cell sensitivity to luteinizing hormone and insulin in polycystic ovarian syndrome, Reproductive Biology, 16 (1), 53-60, https://doi.org/10.1016/j.repbio.2015.12.006.

Chapman, J.C., Min, S.H., Freeh, S.M., Michael, S.D. (2009). The estrogen-injected female mouse: New insight into the etiology of PCOS, Reproductive Biology and Endocrinology, 7, 47.

Ch’ng, C.L., Jones, M.K., Kingham, J.G. (2007). Celiac disease and autoimmune thyroid disease, Clinical Medicine & Research, 5 (3), 184-192, https://doi.org/10.3121/cmr.2007.738.

Chen, M.J., Yang, W.S., Chen, C.L., Wu, M.-Y., Yang, Y.-S., Ho, H.-N. (2008). The relationship between anti-mullerian hormone, androgen and insulin resistance on the number of antral follicles in women with polycystic ovary syndrome, Human Reproduction, 23 (4), 952–957, https://doi.org/10.1093/humrep/den015.

Chen, Z.J., Zhao, H., He, L., Shi, Y., Qin Y., Shi, Y., Li, Z., You, L., Zhao, J., Liu, J., Liang, X., Zhao, X., Zhao, J., Sun, Y., Zhang, B., Jiang, H., Zhao, D., Bian, Y., Gao, X., Geng, L., Li, Y., Zhu, D., Sun, X., Xu, J.-E., Hao, C., Ren, C.-E., Zhang, Y., Chen, S., Zhang, W., Yang, A., Yan, J., Li, Y., Ma, J., Zhao, Y. (2010). Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3, Nature Genetics, 43, 55–59, https://doi.org/10.1038/ng.732.

Clemente, N., Jamin, SP, Lugovskoy, A., Carmillo, P., Ehrenfels, C., Picard, J.-Y., Whitty, A., Josso, N., Pepinsky, RB, Cate, RL (2010). Processing of Anti-Müllerian Hormone Regulates Receptor Activation by a Mechanism Distinct from TGF-β, Molecular Endocrinology, 24 (11), 2193–2206, https://doi.org/10.1210/me.2010-0273.

Da Gama Coelho Riccio, L., Santulli, P., Marcellin, L., Abrão, MS, Batteux, F., Chapron, C. (2018). Immunology of endometriosis, Best Practice & Research Clinical Obstetrics & Gynaecology, 50, 39–49, https://doi.org/10.1016/j.bpobgyn.2018.01.010.

D’Antonio, M., Martelli, F., Peano, S. et al. (2000). Ability of recombinant human TNF binding protein-1 (rh TBP-1) to inhibit the development of experimentally induced endometriosis in rats, Journal of Reproductive Immunology, 48, 81-98.

Dapas, M., Lin, FTJ, Nadkarni, G.N., Sisk, R., Legro, R.S., Urbanek, M., Hayes, M.G., Dunaif, A. (2020). Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis, PLOS Medicine 17 (6), 1-28), https://doi.org/10.1371/journal.pmed.1003132.

Dinsdale, N.L., Crespi, B.J. (2021). Endometriosis and polycystic ovary syndrome are diametric disorders, Evolutionary Applications, https://doi.org/10.1111/eva.13244.

Dunaif, A., Fauser, B.C.J.M. (2013). Renaming PCOS–A Two-State Solution, The Journal of Clinical Endocrinology & Metabolism, 98 (11), 4325–4328, https://doi.org/10.1210/jc.2013-2040.

Fontenot, J.D., Gavin, M.A., Rudensky, A.Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells, Nature Immunology, 4, 330–336, https://doi.org/10.1038/ni904.

Gogacz, M., Winkler, I., Bojarska-Junak, A., Tabarkiewicz, J., Semczuk, A., Rechberger, T., Adamiak, A. (2014). T regulatory lymphocytes in patients with endometriosis, Molecular Medicine Reports, 10, 1072–1076, https://doi.org/10.3892/mmr.2014.2294.

Guerin, L.R., Prins, J.R., Robertson, S.A. (2009). Regulatory T-cells and immune tolerance in pregnancy: A new target for infertility treatment? Human Reproduction, Update, 15, 517–535, https://doi.org/10.1093/humupd/dmp004.

Hadizadeh Riseh, S., Abbasalizad Farhang, M., Mobasseri, M., Asghari Jafarabadi, M. (2017). The relationship between thyroid hormones, antithyroid antibodies, anti-tissue transglutaminase and anti-gliadin antibodies in patients with hashimoto’s thyroiditis., Acta Endocrinologica, 13 (2), 174-179, https://doi.org/10.4183/aeb.2017.174.

Hanada, T., Tsuji, S., Nakayama, M., Wakinoue, S., Kasahara, K., Mori, T., Ogasawara, K., Murakami, T. (2018). Suppressive regulatory T cells and latent transforming growth factor-β-expressing macrophages are altered in the peritoneal fluid of patients with endometriosis, Reproductive Biology and Endocrinology, 16 (9), https://doi.org/10.1186/s12958-018-0325-2.

Holmgaard, R.B., Schaer, D.A., Li, Y., Castaneda, S.P., Murphy, M.Y., Xu, X., Inigo, I., Dobkin, J., Manro, J.R., Iversen, P.W., Surguladze, D., Hall, G.E., Novosiadly, R.D., Benhadji, K.A., Plowman, D.G., Kalos, M., Driscoll, E.K. (2018). Targeting the TGFβpathway with galunisertib, a TGFβRI small molecule inhibitor,promotes anti- tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade, Journal for ImmunoTherapy of Cancer, 6 (47), https://doi.org/10.1186/s40425-018-0356-4.

Hu, Y., Zhang, L., Chen, H., Liu, X., Zheng, X., Shi, H., Jiang, L., Cui, D., (2019). Analysis of Regulatory T Cell Subsets and Their Expression of Helios and PD-1 in Patients with Hashimoto Thyroiditis, International Journal of Endocrinology, 5368473, 1-11, https://doi.org/10.1155/2019/5368473.

Huang, S., Hölzel, M., Knijnenburg, T., Schlicker, A., Roepman, P., McDermott, U., Garnett, M., Grernrum, W., Sun, C., Prahallad, A., Groenendijk, FH, Mittempergher, L., Nijkamp, W., Neefjes, J., Salazar, R., ten Dijke, P., Uramoto, H., Tanaka, F., Beijersbergen, RL, Wessels, LFA Bernards, R., (2021). MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling, Cell, 151 (5), 937-950, https://doi.org/10.1016/j.cell.2012.10.035.

Jacha, R., Jakimiuk, A., Krzeczkowska-Sendrakowska, M. (2020). Endokrynologia ginekologiczna. Zespół policystycznych jajników. Gdynia: Echo Kompendium.

Jang, S.G., Lee, J., Hong, S.M., Kwok, S.K., Cho, M.L., Park, S.H. (2020). Metformin enhances the immunomodulatory potential of adipose-derived mesenchymal stem cells through STAT1 in an animal model of lupus, Rheumatology, 59 (6), 1426-1438, https://doi.org/10.1093/rheumatology/kez631.

Jakubowska, J., Bohdanowicz-Pawlak, A., Milewicz, A., Szymczak, J., Bednarek-Tupikowska, G., Demissie, M. (2008). Plasma cytokines in obese women with polycystic ovary syndrome, before and after metformin treatment, Gynecological Endocrinology 24 (7), 378-384, https://doi.org/10.1080/09513590802128968.

Kara, M., Ozcan, S.S., Aran, T., Kara, O., Yilmaz, N. (2019). Evaluation of Endometrial Receptivity by Measuring HOXA-10, HOXA-11 and Leukemia Inhibitory Factor Expression in Patients with Polycystic Ovary Syndrome, Journal of Minimally Invasive Gynecology, 8, 118–122.

Krishna, MB, Joseph A., Subramaniam, AG, Gupta A., Pilla SM, Laloraya M., (2015). Reduced Tregs in Peripheral Blood of PCOS Patients – a Consequence of Aberrant Il2 Signaling, The Journal of Clinical Endocrinology & Metabolism, 100 (1), 282–292, https://doi.org/10.1210/jc.2014-2401.

Leibel, N.I., Baumann, E.E., Kocherginsky, M., Rosenfield, R.L. (2006). Relationship of adolescent polycystic ovary syndrome to parental metabolic syndrome, The Journal of Clinical Endocrinology & Metabolism, 91 (4), 1275-1283, https://doi.org/10.1210/jc.2005-1707.

Löffek, S. (2018). Transforming of the Tumor Microenvironment: Implications for TGF-β Inhibition in the Context of Immune-Checkpoint Therapy, Journal of Oncology, https://doi.org/10.1155/2018/9732939.

Mainardi, E., Montanelli, A., Dotti, M., Nano, R., Moscato, G. (2002). Thyroid-Related Autoantibodies and Celiac Disease: A Role for a Gluten-Free Diet?, Journal of Clinical Gastroenterology, 35 (3), 245-248, https://doi.org/10.1097/00004836-200209000-00009.

Miller, J.E., Ahn, S.H., Monsanto, S.P., Khalaj, K., Koti, M., Tayade, C. (2017). Implications of immune dysfunction on endometriosis associated infertility, Oncotarget, 8, 7138-7147, https://doi.org/10.18632/oncotarget.12577.

Pellatt, L., Rice, S., Mason, HD (2010). Anti-müllerian hormone and polycystic ovary syndrome: a mountain too high? Reproduction, 139 (5), 825–833, https://doi.org/10.1530/REP-09-0415.

Rahmioglu, N., Nyholt, D.R., Morris, A.P., Missmer, S.A., Montgomery, G.W., Zondervan, K.T. (2014). Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets, Human Reproduction, Update, 20, 702–716.

Rami, B., Sumnik, Z., Schober, E., Waldhör, T., Battelino, T., Bratanic, N., Kürti, K., Lebl, J., Limbert, C., Madacsy, L., Odink, RJH., Paskova, M., Soltesz, G. (2005). Screening detected celiac disease in children with type 1 diabetes mellitus: effect on the clinical course (a case control study), Journal of Pediatric Gastroenterology and Nutrition, 41 (3), 317–321, https://doi.org/10.1097/01.mpg.0000174846.67797.87.

Rothenberger, N.J., Somasundaram, A., Stabile, L.P. (2018). The Role of the Estrogen Pathway in the Tumor Microenvironment, International Journal of Molecular Science, 19 (2), 1-16, https://doi.org/10.3390/ijms19020611.

Rynne-Vidal, A., Au-Yeung, C.L., Jimenez-Heffernan, J.A., Perez-Lozano, M.L., Cremades- Jimeno, L., Barcena, C., Cristobal-Garcia, I., Fernandez-Chacon, C., Yeung, TL, Mok, SC, Sandoval, P., López-Cabrera, M., (2017). Mesothelial-to-mesenchymal transitionas a possible therapeutic target in peritoneal metastasis of ovarian cancer, The Journal of Pathology, 242, 140–151, https://doi.org/10.1002/path.4889.

Sanchez-Albisua, I., Wolf, J. , Neu, A., Geiger, H, Wäscher, I., Stern, M. (2005). Coeliac disease in children with Type 1 diabetes mellitus: the effect of the gluten-free diet, Diabetic Medicine, 22 (8), 1079-1082, https://doi.org/10.1111/j.1464-5491.2005.01609.x. Sategna-Guidetti, C., Volta, U., Ciacci, C., Usai, P., Carlino, A., De Franceschi, L., Camera, A., Pelli, A., Brossa, C. (2001). Prevalence of thyroid disorders in untreated adult celiac disease patients and effect of gluten withdrawal: an Italian multicenter study, The American Journal of Gastroenterology, 96 (3), 751-757, https://doi.org/10.1111/j.1464-5491.2005.01609.x.

Schadendorf, D., Gawlik, C., Haney, U., Ostmeier, H., Suter, L., Czarnetzki, B.M. (1993). Tumour progression and metastatic behaviour in vivo correlates with integrin expression on melanocytic tumours, The Journal of Pathology, 170 (4), 429–434, https://doi.org/10.1002/path.1711700405.

Shi, Y., Massagué, J., (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus, Cell, 113, 685–700.

Somigliana, E., Vigano, P., Rossi, G et al. (1999). Endometrial ability to implant in ectopic sites can be prevented by interleukin 12 in a murine model of endometriosis, Human Reproducion, 9, 14, 2944-2950.

Stewart, C.L., Kaspar, P., Brunet, L.J., Bhatt, H., Gadi, I., Kontgen, F., Abbondanzo, S.J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor, Nature, 359, 76–79.

Ventura, A., Neri, E., Ughi, C., Leopaldi, A.,Città, A., Not, T. (2000). Gluten-dependent diabetes-related and thyroid-related autoantibodies in patients with celiac disease, The Journal of Pediatrics, 137 (2), 263-265, https://doi.org/10.1067/mpd.2000.107160.

Viljamaa, M., Kaukinen, K., Huhtala, H., Kyrönpalo, S., Rasmussen, M., Collin, P. (2004). Coeliac Disease, autoimmune diseases and gluten exposure, Scandinavian Journal of Gastroenterology, 40 (4), 437-443, https://doi.org/10.1080/00365520510012181.

Volta, U., Rodrigo, L., Granito, A., Petrolini, N., Muratori, P., Muratori, L., Linares, A., Veronesi, L., Fuentes, D., Zauli, D., Bianchi, F.B. (2002). Celiac disease in autoimmune cholestatic liver disorders, The Amercian Journal of Gastroenterology, 97 (10), 2609-2613, https://doi.org/10.1111/j.1572-0241.2002.06031.x.

Wang, X., Mittal, P., Castro CA, Rajkovic G, Rajkovic A. (2017). Med12 regulates ovarian steroidogenesis, uterine development and maternal effects in the mammalian egg, Biology of Reproduction, 97 (6), 822-834, https://doi.org/10.1093/biolre/iox143.

Wilson, R.B., Archid, R., Reymond, M.A. (2020). Reprogramming of Mesothelial- Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-β1 Inhibition, International Journal of Molecular Science, 21 (11), 1- 16, https://doi.org/10.3390/ijms21114158.

Young,V.J., Ahmad, S.F., Duncan, W.C., Horne, A.W. (2017). The role of TGF-β in the pathophysiology of peritoneal endometriosis, Human Reproduction Update, 3 (5), 548- 559, https://doi.org/10.1093/humupd/dmx016.

Young, V.J., Brown, J.K., Maybin, J., Saunders, P.T., Duncan, W.C., Horne, A.W. (2014). Transforming growth factor-β induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis, The Journal of Clinical Endocrinology & Metabolism, 99 (9), 3450–3459, https://doi.org/10.1210/jc.2014-1026.

Zeber-Lubecka, N., Hennig, E. (2021). Genetic Susceptibility to Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto’s Thyroiditis: How Far Is Our Understanding?, Frontiers in Immunology, https://doi.org/10.3389/fimmu.2021.606620.

Downloads

Download data is not yet available.