Okres prekoncepcyjny i ciąża jako czas troski o zdrowie prokreacyjne potomstwa – znaczenie mechanizmów epigenetycznych
pdf

Słowa kluczowe

zdrowie prokreacyjne
potomstwo
epigenetyka

Jak cytować

Smyczyńska, J. (2020). Okres prekoncepcyjny i ciąża jako czas troski o zdrowie prokreacyjne potomstwa – znaczenie mechanizmów epigenetycznych. Kwartalnik Naukowy Fides Et Ratio, 43(3), 223-237. https://doi.org/10.34766/fetr.v43i3.324
Język / Language
Słowa kluczowe

Abstrakt

Zdrowie człowieka uwarunkowane jest współdziałaniem czynników genetycznych i środowiskowych. Obok chorób uwarunkowanych mutacjami genów czy aberracjami chromosomowymi, coraz więcej uwagi przywiązuje się obecnie do zaburzeń wzorców ekspresji genów, czyli modyfikacji epigenetycznych. Kluczowe momenty programowania epigenetycznego to okres gametogenezy i okres preimplantacyjny rozwoju zarodka. Zaburzenia epigenetyczne mogą być dziedziczone w kolejnych pokoleniach. W pracy omówiono wybrane sytuacje, w których zaburzenia mechanizmów epigenetycznych w okresie prekoncepcyjnym i podczas ciąży mogą mieć niekorzystny wpływ na zdrowie prokreacyjne potomstwa: otyłość, niedożywienie i hiperandrogenizm u matki, hipotrofię wewnątrzmaciczną, narażenie na działanie związków chemicznych zaburzających gospodarkę hormonalną, a także modyfikacje epigenetyczne plemników oraz wpływ technik zapłodnienia in vitro na programowanie epigenetyczne.

https://doi.org/10.34766/fetr.v43i3.324
pdf

Bibliografia

Abbott, D.H., Kraynak, M., Dumesic, D.A. & Levine, J.E. (2019). In utero Androgen Excess:

A Developmental Commonality Preceding Polycystic Ovary Syndrome?, Frontiers of Hormone Research, 53, 1–17. https://doi.org/10.1159/000494899.

Al-Daghri, N.M., Al-Attas, O.S., Alokail, M.S., Alkharfy, K.M., El-Kholie, E., Yousef, M., Al-Othman, A., Al-Saleh, Y., Sabico, S., Kumar, S. & Chrousos, G. P. (2012). Increased vitamin D supplementation recommended during summer season in the gulf region: a counterintuitive seasonal effect in vitamin D levels in adult, overweight and obese Middle Eastern residents, Clinical Endocrinology, 76, 346–350. https://doi.org/ 10.1111/j.1365-2265.2011.04219.x.

Barker, D.J.P. (2002). Fetal programming of coronary heart disease, Trends in Endocrinology and Metabolism, 13, 364–368. https://doi.org/10.1016/s1043-2760(02)00689-6

Baydilli, N., Selvi, İ., Akınsal, E.C., Zararsız, G.E. & Ekmekçioğlu, O. (2020). How does body mass index affect semen parameters and reproductive hormones in infertile males?, Turkish Journal of Urology, 46, 101–107. https://doi.org/10.5152/tud.2020.19243.

Bedi, Y., Chang, R.C., Gibbs, R., Clement, T.M. & Golding, M.C. (2019). Alterations in sperm-inherited noncoding RNAs associate with late-term fetal growth restriction induced by preconception paternal alcohol use, Reproductive Toxicology, 87, 11–20. https://doi.org/10.1016/j.reprotox.2019.04.006.

Benatti, R.O., Melo, A.M., Borges, F.O., Ignacio-Souza, L. M., Simino, L.A.P., Milanski, M., Velloso, L.A., Torsoni, M.A. & Torsoni, A.S. (2014). Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring, The British Journal of Nutrition, 111, 2112–2122. https://doi.org/10.1017/S0007114514000579.

Beszterda, M., Frański, R. (2018). Endocrine disruptor compounds in environment: As

a danger for children health, Pediatric Endocrinology Diabetes and Metabolism, 24, 88-95. https://doi.org/10.18544/PEDM-24.02.0107.

Le Bouc, Y., Rossignol, S., Azzi, S., Steunou, V., Netchine, I. & Gicquel, C. (2010). Epigenetics, genomic imprinting and assisted reproductive technology, Annales d’Endocrinologie, 71, 237–238. https://doi.org/10.1016/j.ando.2010.02.004.

Chang, R. C., Wang, H., Bedi, Y. & Golding, M. C. (2019). Preconception paternal alcohol exposure exerts sex ‑ specific effects on offspring growth and long term metabolic programming, Epigenetics & Chromatin, 12: 9. https://doi.org/10.1186/s13072-019-0254-0.

Diamanti-Kandarakis, E. & Dunaif, A. (2012). Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications, Endocrine Reviews, 33, 981–1030. https://doi.org/10.1210/er.2011-1034.

Elshenawy, S. & Simmons, R. (2016). Maternal obesity and prenatal programming, Molecular and Cellular Endocrinology, 435, 2–6. https://doi.org/10.1016/j.mce.2016.07.002.

Enquobahrie, D. A., Wander, P. L., Tadesse, M. G., Qiu, C., Holzman, C. & Williams,

M. A. (2017). Maternal pre-pregnancy body mass index and circulating microRNAs in pregnancy, Obesity Research & Clinical Practice, 11, 464–474. https://doi.org/10.1016/j.orcp.2016.10.287.

Gaillard, R. (2013). Risk Factors and Outcomes of Maternal Obesity and Excessive Weight Gain During Pregnancy, Obesity, 21, 046–1055. doi: 10.1002/oby.20088.

Ge, Z. J., Liang, Q. X., Hou, Y., Han, Z. M., Schatten, H., Sun, Q. Y. & Zhang, C. L. (2014). Maternal obesity and diabetes may cause DNA methylation alteration in the spermatozoa of offspring in mice, Reproductive Biology and Endocrinology, 12, 1–8. https://doi.org/10.1186/1477-7827-12-29.

Goyal, D., Limesand, S. W. & Goyal, R. (2019). Epigenetic responses and the developmental origins of health and disease, Journal of Endocrinology, 242, T105–T119. https://doi.org/10.1530/JOE-19-0009.

Hattori, H., Hiura, H., Kitamura, A., Miyauchi, N., Kobayashi, N., Takahashi, S., Okae, H., Kyono, K., Kagami, M., Ogata, T. & Arima, T. (2019). Association of four imprinting disorders and ART, Clinical Epigenetics, 11, 1–12. doi: 10.1186/s13148-019-0623-3

Ibáñez, L., Potau, N., Enriquez, G. & de Zegher, F. (2000). Reduced uterine and ovarian size in adolescent girls born small for gestational age, Pediatric Research, 47, 575–577. https://doi.org/10.1203/00006450-200005000-00003.

Ibáñez, L., Potau, N., Ferrer, A., Rodriguez-Hierro, F., Marcos, M. V. & De Zegher, F. (2002). Anovulation in eumenorrheic, nonobese adolescent girls born small for gestational age: insulin sensitization induces ovulation, increases lean body mass, and reduces abdominal fat excess, dyslipidemia, and subclinical hyperandrogenism, Journal of Clinical Endocrinology and Metabolism, 87, 5702–5705. https://doi.org/10.1210/jc.2002-020926.

Jensen, T. K., Andersson, A.-M., Jørgensen, N., Andersen, A.-G., Carlsen, E., Petersen, J. H. & Skakkebaek, N. E. (2004). Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men, Fertility and Sterility, 82, 863–870. https://doi.org/ 10.1016/j.fertnstert.2004.03.056.

Kitsiou-Tzeli, S. & Tzetis, M. (2017). Maternal epigenetics and fetal and neonatal growth, Current Opinion in Endocrinology, Diabetes, and Obesity, 24, 43–46. https://doi.org/10.1097/MED.0000000000000305.

Kolasa-Wołosiuk, A., Wiszniewska, B. (2018). Substancje chemiczne zaburzające gospodarkę hormonalną a zdrowie reprodukcyjne mężczyzn, Postępy Andrologii Online, 5, 13–27. https://doi.org/10.26404/PAO.

Korpysz, A. & Szalecki, M. (2019). What’s new in IUGR from the endocrinological point of view ? Pediatric Endocrinology, Diabetes and Metabolism, 25, 188–193. https://doi.org/10.5114/pedm.2019.91547.

Lin, Y., Cheng, X., Sutovsky, P., Wu, D., Che, L.-Q., Fang, Z.-F., Xu, S.-Y., Ren, B. & Dong, H.J. (2017). Effect of intra-uterine growth restriction on long-term fertility in boars, Reproduction, Fertility, and Development, 29, 374–382. https://doi.org/10.1071/RD15130.

Mao, J., Pennington, K. A., Talton, O.O., Schulz, L. C., Sutovsky, M., Lin, Y. & Sutovsky,

P. (2018). In Utero and Postnatal Exposure to High Fat , High Sucrose Diet Suppressed Testis Apoptosis and Reduced Sperm Count, Scientific Reports, 8, 1–11. https://doi.org/10.1038/s41598-018-25950-3.

Marcho, C., Oluwayiose, O.A. & Pilsner, J. R. (2020). The preconception environment and sperm epigenetics, Andrology [ahead of print]. https://doi.org/ 10.1111/andr.12753.

Muhlhausler, B.S., Duffield, J.A. & McMillen, I. C. (2007). Increased maternal nutrition stimulates peroxisome proliferator activated receptor-gamma, adiponectin, and leptin messenger ribonucleic acid expression in adipose tissue before birth, Endocrinology, 148, 878–885. https://doi.org/10.1210/en.2006-1115.

Neri, C. & Edlow, A. G. (2016). Effects of Maternal Obesity on Fetal Programming: Molecular Approches, Cold Spring Harbor Perspectives in Medicine, 6 (2), a026591. https://doi.org/10.1101/cshperspect.a026591.

Olszewska, M. & Kurpisz, M. (2010). Metylacja i jej rola regulacyjna wobec rodzicielskiego piȩtna genomowego, Postępy Higieny i Medycyny Doświadczalnej, 64, 642–649.

Şanlı, E. & Kabaran, S. (2019). Maternal Obesity, Maternal Overnutrition and Fetal Programming: Effects of Epigenetic Mechanisms on the Development of Metabolic Disorders, Current Genomics, 20, 419–427. https://doi.org/10.2174/1389202920666191030092225.

Sebastiani, G., Barbero, A.H., Borr, C., Casanova, M.A., Aldecoa-Bilbao, V. & Andreu-Fern, V. (2019). The Effects of Vegetarian and Vegan Diet during Pregnancy on the Health of Mothers and Offspring, Nutrients, 11, 557. https://doi.org/10.3390/nu11030557.

Shalom-Paz, E., Weill, S., Ginzberg, Y., Khatib, N., Anabusi, S., Klorin, G., Sabo,

E. & Beloosesky, R. (2017). IUGR induced by maternal chronic inflammation: long-term effect on offspring’s ovaries in rat model – a preliminary report, Journal of Endocrinological Investigation, 40, 125–1131. https://doi.org/10.1007/s40618-017-0681-3.

Słowikowska-Hilczer, J. (2014). Dysgenezja jąder jako przyczyna męskiej niepłodności, Postępy Andrologii Online, 1, 5–13.

Słowikowska-Hilczer, J., Szarras-Czapnik, M., Marchlewska, K., Filipiak, E., Oszukowska,

E., Walczak-Jędrzejowska, R. & Kula, K. (2013). Zespół dysgenetycznych jąder : patogeneza i konsekwencje kliniczne, Endokrynologia Pediatryczna, 12, 67–76.

Słowikowska-Hilczer, J., Szarras-Czapnik, M., Wolski, J. K., Oszukowska, E., Hilczer,

M., Jakubowski, L., Walczak-Jędrzejowska, R., Marchlewska, K., Filipiak, E., Kałużewski, B., Baka-Ostrowska, M., Niedzielski, J. & Kula, K. (2015). The risk of neoplasm associated with dysgenetic testes in prepubertal and pubertal/adult patients, Folia Histochemica et Cytobiologica, 53, 218–226. https://doi.org/10.5603/FHC.a2015.0021.

Toschi, P., Capra, E., Anzalone, D.A., Lazzari, B., Turri, F., Pizzi, F., Scapolo, P.A., Stella,

A., Williams, J.L., Ajmone Marsan, P. & Loi, P. (2020). Maternal peri-conceptional undernourishment perturbs offspring sperm methylome, Reproduction, 159, 513–523. https://doi.org/10.1530/REP-19-0549.

Vaiserman, A. & Lushchak, O. (2019). Prenatal malnutrition-induced epigenetic dysregulation as a risk factor for type 2 diabetes, International Journal of Genomics, 2019:3821409. https://doi.org/10.1155/2019/3821409.

Valsamakis, G., Kyriazi, E. L., Mouslech, Z., Siristatidis, C. & Mastorakos, G. (2015). Effect of maternal obesity on pregnancy outcomes and long-term metabolic consequences, Hormones, 14, 345–357. https://doi.org/10.14310/horm.2002.1590.

von Wolff, M. & Haaf, T. (2020). In Vitro Fertilization Technology and Child Health, Deutsches Arzteblatt International, 117, 23–30. https://doi.org/10.3238/arztebl.2020.0023.

Zhang, J., Zhang, F., Didelot, X., Bruce, K.D., Cagampang, F. R., Vatish, M., Hanson,

M., Lehnert, H., Ceriello, A. & Byrne, C.D. (2009). ‘Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring’, BMC Genomics, 10:478. https://doi.org/10.1186/1471-2164-10-478.

Zhou, Y., Gu, P., Shi, W., Li, J., Hao, Q., Cao, X., Lu, Q. & Zeng, Y. (2016). MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells’, International Journal of Molecular Medicine, 37 (4), 931–938. https://doi.org/10.3892/ijmm.2016.2499.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##