Preconceptive period and pregnancy as a time of care for reproductive health of offspring – significance of epigenetic mechanisms
pdf (Język Polski)

Keywords

procreative health
offspring
epigenetics

How to Cite

Smyczyńska, J. (2020). Preconceptive period and pregnancy as a time of care for reproductive health of offspring – significance of epigenetic mechanisms. Quarterly Journal Fides Et Ratio, 43(3), 223-237. https://doi.org/10.34766/fetr.v43i3.324
Keywords

Abstract

Human health is determined by the interaction of genetic and environmental factors. In addition to diseases caused by gene mutations or chromosomal aberrations, more and more attention is currently being paid to gene expression disorders, i.e. epigenetic modifications. The key moments of epigenetic programming are the period of gametogenesis and the preimplantation period of embryo development. Epigenetic disorders are not only the cause of offspring diseases but can also be inherited in next generations. The paper discusses selected situations in which disorders of epigenetic mechanisms during the preconceptive period and during pregnancy may have an adverse effect on the reproductive health of offspring: maternal obesity, malnutrition and hyperandrogenism, intrauterine hypotrophy, exposure to endocrine disrupting chemicals and epigenetic modifications of spermatozoa and the impact of in vitro fertilization techniques on epigenetic programming

https://doi.org/10.34766/fetr.v43i3.324
pdf (Język Polski)

References

Abbott, D.H., Kraynak, M., Dumesic, D.A. & Levine, J.E. (2019). In utero Androgen Excess:

A Developmental Commonality Preceding Polycystic Ovary Syndrome?, Frontiers of Hormone Research, 53, 1–17. https://doi.org/10.1159/000494899.

Al-Daghri, N.M., Al-Attas, O.S., Alokail, M.S., Alkharfy, K.M., El-Kholie, E., Yousef, M., Al-Othman, A., Al-Saleh, Y., Sabico, S., Kumar, S. & Chrousos, G. P. (2012). Increased vitamin D supplementation recommended during summer season in the gulf region: a counterintuitive seasonal effect in vitamin D levels in adult, overweight and obese Middle Eastern residents, Clinical Endocrinology, 76, 346–350. https://doi.org/ 10.1111/j.1365-2265.2011.04219.x.

Barker, D.J.P. (2002). Fetal programming of coronary heart disease, Trends in Endocrinology and Metabolism, 13, 364–368. https://doi.org/10.1016/s1043-2760(02)00689-6

Baydilli, N., Selvi, İ., Akınsal, E.C., Zararsız, G.E. & Ekmekçioğlu, O. (2020). How does body mass index affect semen parameters and reproductive hormones in infertile males?, Turkish Journal of Urology, 46, 101–107. https://doi.org/10.5152/tud.2020.19243.

Bedi, Y., Chang, R.C., Gibbs, R., Clement, T.M. & Golding, M.C. (2019). Alterations in sperm-inherited noncoding RNAs associate with late-term fetal growth restriction induced by preconception paternal alcohol use, Reproductive Toxicology, 87, 11–20. https://doi.org/10.1016/j.reprotox.2019.04.006.

Benatti, R.O., Melo, A.M., Borges, F.O., Ignacio-Souza, L. M., Simino, L.A.P., Milanski, M., Velloso, L.A., Torsoni, M.A. & Torsoni, A.S. (2014). Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring, The British Journal of Nutrition, 111, 2112–2122. https://doi.org/10.1017/S0007114514000579.

Beszterda, M., Frański, R. (2018). Endocrine disruptor compounds in environment: As

a danger for children health, Pediatric Endocrinology Diabetes and Metabolism, 24, 88-95. https://doi.org/10.18544/PEDM-24.02.0107.

Le Bouc, Y., Rossignol, S., Azzi, S., Steunou, V., Netchine, I. & Gicquel, C. (2010). Epigenetics, genomic imprinting and assisted reproductive technology, Annales d’Endocrinologie, 71, 237–238. https://doi.org/10.1016/j.ando.2010.02.004.

Chang, R. C., Wang, H., Bedi, Y. & Golding, M. C. (2019). Preconception paternal alcohol exposure exerts sex ‑ specific effects on offspring growth and long term metabolic programming, Epigenetics & Chromatin, 12: 9. https://doi.org/10.1186/s13072-019-0254-0.

Diamanti-Kandarakis, E. & Dunaif, A. (2012). Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications, Endocrine Reviews, 33, 981–1030. https://doi.org/10.1210/er.2011-1034.

Elshenawy, S. & Simmons, R. (2016). Maternal obesity and prenatal programming, Molecular and Cellular Endocrinology, 435, 2–6. https://doi.org/10.1016/j.mce.2016.07.002.

Enquobahrie, D. A., Wander, P. L., Tadesse, M. G., Qiu, C., Holzman, C. & Williams,

M. A. (2017). Maternal pre-pregnancy body mass index and circulating microRNAs in pregnancy, Obesity Research & Clinical Practice, 11, 464–474. https://doi.org/10.1016/j.orcp.2016.10.287.

Gaillard, R. (2013). Risk Factors and Outcomes of Maternal Obesity and Excessive Weight Gain During Pregnancy, Obesity, 21, 046–1055. doi: 10.1002/oby.20088.

Ge, Z. J., Liang, Q. X., Hou, Y., Han, Z. M., Schatten, H., Sun, Q. Y. & Zhang, C. L. (2014). Maternal obesity and diabetes may cause DNA methylation alteration in the spermatozoa of offspring in mice, Reproductive Biology and Endocrinology, 12, 1–8. https://doi.org/10.1186/1477-7827-12-29.

Goyal, D., Limesand, S. W. & Goyal, R. (2019). Epigenetic responses and the developmental origins of health and disease, Journal of Endocrinology, 242, T105–T119. https://doi.org/10.1530/JOE-19-0009.

Hattori, H., Hiura, H., Kitamura, A., Miyauchi, N., Kobayashi, N., Takahashi, S., Okae, H., Kyono, K., Kagami, M., Ogata, T. & Arima, T. (2019). Association of four imprinting disorders and ART, Clinical Epigenetics, 11, 1–12. doi: 10.1186/s13148-019-0623-3

Ibáñez, L., Potau, N., Enriquez, G. & de Zegher, F. (2000). Reduced uterine and ovarian size in adolescent girls born small for gestational age, Pediatric Research, 47, 575–577. https://doi.org/10.1203/00006450-200005000-00003.

Ibáñez, L., Potau, N., Ferrer, A., Rodriguez-Hierro, F., Marcos, M. V. & De Zegher, F. (2002). Anovulation in eumenorrheic, nonobese adolescent girls born small for gestational age: insulin sensitization induces ovulation, increases lean body mass, and reduces abdominal fat excess, dyslipidemia, and subclinical hyperandrogenism, Journal of Clinical Endocrinology and Metabolism, 87, 5702–5705. https://doi.org/10.1210/jc.2002-020926.

Jensen, T. K., Andersson, A.-M., Jørgensen, N., Andersen, A.-G., Carlsen, E., Petersen, J. H. & Skakkebaek, N. E. (2004). Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men, Fertility and Sterility, 82, 863–870. https://doi.org/ 10.1016/j.fertnstert.2004.03.056.

Kitsiou-Tzeli, S. & Tzetis, M. (2017). Maternal epigenetics and fetal and neonatal growth, Current Opinion in Endocrinology, Diabetes, and Obesity, 24, 43–46. https://doi.org/10.1097/MED.0000000000000305.

Kolasa-Wołosiuk, A., Wiszniewska, B. (2018). Substancje chemiczne zaburzające gospodarkę hormonalną a zdrowie reprodukcyjne mężczyzn, Postępy Andrologii Online, 5, 13–27. https://doi.org/10.26404/PAO.

Korpysz, A. & Szalecki, M. (2019). What’s new in IUGR from the endocrinological point of view ? Pediatric Endocrinology, Diabetes and Metabolism, 25, 188–193. https://doi.org/10.5114/pedm.2019.91547.

Lin, Y., Cheng, X., Sutovsky, P., Wu, D., Che, L.-Q., Fang, Z.-F., Xu, S.-Y., Ren, B. & Dong, H.J. (2017). Effect of intra-uterine growth restriction on long-term fertility in boars, Reproduction, Fertility, and Development, 29, 374–382. https://doi.org/10.1071/RD15130.

Mao, J., Pennington, K. A., Talton, O.O., Schulz, L. C., Sutovsky, M., Lin, Y. & Sutovsky,

P. (2018). In Utero and Postnatal Exposure to High Fat , High Sucrose Diet Suppressed Testis Apoptosis and Reduced Sperm Count, Scientific Reports, 8, 1–11. https://doi.org/10.1038/s41598-018-25950-3.

Marcho, C., Oluwayiose, O.A. & Pilsner, J. R. (2020). The preconception environment and sperm epigenetics, Andrology [ahead of print]. https://doi.org/ 10.1111/andr.12753.

Muhlhausler, B.S., Duffield, J.A. & McMillen, I. C. (2007). Increased maternal nutrition stimulates peroxisome proliferator activated receptor-gamma, adiponectin, and leptin messenger ribonucleic acid expression in adipose tissue before birth, Endocrinology, 148, 878–885. https://doi.org/10.1210/en.2006-1115.

Neri, C. & Edlow, A. G. (2016). Effects of Maternal Obesity on Fetal Programming: Molecular Approches, Cold Spring Harbor Perspectives in Medicine, 6 (2), a026591. https://doi.org/10.1101/cshperspect.a026591.

Olszewska, M. & Kurpisz, M. (2010). Metylacja i jej rola regulacyjna wobec rodzicielskiego piȩtna genomowego, Postępy Higieny i Medycyny Doświadczalnej, 64, 642–649.

Şanlı, E. & Kabaran, S. (2019). Maternal Obesity, Maternal Overnutrition and Fetal Programming: Effects of Epigenetic Mechanisms on the Development of Metabolic Disorders, Current Genomics, 20, 419–427. https://doi.org/10.2174/1389202920666191030092225.

Sebastiani, G., Barbero, A.H., Borr, C., Casanova, M.A., Aldecoa-Bilbao, V. & Andreu-Fern, V. (2019). The Effects of Vegetarian and Vegan Diet during Pregnancy on the Health of Mothers and Offspring, Nutrients, 11, 557. https://doi.org/10.3390/nu11030557.

Shalom-Paz, E., Weill, S., Ginzberg, Y., Khatib, N., Anabusi, S., Klorin, G., Sabo,

E. & Beloosesky, R. (2017). IUGR induced by maternal chronic inflammation: long-term effect on offspring’s ovaries in rat model – a preliminary report, Journal of Endocrinological Investigation, 40, 125–1131. https://doi.org/10.1007/s40618-017-0681-3.

Słowikowska-Hilczer, J. (2014). Dysgenezja jąder jako przyczyna męskiej niepłodności, Postępy Andrologii Online, 1, 5–13.

Słowikowska-Hilczer, J., Szarras-Czapnik, M., Marchlewska, K., Filipiak, E., Oszukowska,

E., Walczak-Jędrzejowska, R. & Kula, K. (2013). Zespół dysgenetycznych jąder : patogeneza i konsekwencje kliniczne, Endokrynologia Pediatryczna, 12, 67–76.

Słowikowska-Hilczer, J., Szarras-Czapnik, M., Wolski, J. K., Oszukowska, E., Hilczer,

M., Jakubowski, L., Walczak-Jędrzejowska, R., Marchlewska, K., Filipiak, E., Kałużewski, B., Baka-Ostrowska, M., Niedzielski, J. & Kula, K. (2015). The risk of neoplasm associated with dysgenetic testes in prepubertal and pubertal/adult patients, Folia Histochemica et Cytobiologica, 53, 218–226. https://doi.org/10.5603/FHC.a2015.0021.

Toschi, P., Capra, E., Anzalone, D.A., Lazzari, B., Turri, F., Pizzi, F., Scapolo, P.A., Stella,

A., Williams, J.L., Ajmone Marsan, P. & Loi, P. (2020). Maternal peri-conceptional undernourishment perturbs offspring sperm methylome, Reproduction, 159, 513–523. https://doi.org/10.1530/REP-19-0549.

Vaiserman, A. & Lushchak, O. (2019). Prenatal malnutrition-induced epigenetic dysregulation as a risk factor for type 2 diabetes, International Journal of Genomics, 2019:3821409. https://doi.org/10.1155/2019/3821409.

Valsamakis, G., Kyriazi, E. L., Mouslech, Z., Siristatidis, C. & Mastorakos, G. (2015). Effect of maternal obesity on pregnancy outcomes and long-term metabolic consequences, Hormones, 14, 345–357. https://doi.org/10.14310/horm.2002.1590.

von Wolff, M. & Haaf, T. (2020). In Vitro Fertilization Technology and Child Health, Deutsches Arzteblatt International, 117, 23–30. https://doi.org/10.3238/arztebl.2020.0023.

Zhang, J., Zhang, F., Didelot, X., Bruce, K.D., Cagampang, F. R., Vatish, M., Hanson,

M., Lehnert, H., Ceriello, A. & Byrne, C.D. (2009). ‘Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring’, BMC Genomics, 10:478. https://doi.org/10.1186/1471-2164-10-478.

Zhou, Y., Gu, P., Shi, W., Li, J., Hao, Q., Cao, X., Lu, Q. & Zeng, Y. (2016). MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells’, International Journal of Molecular Medicine, 37 (4), 931–938. https://doi.org/10.3892/ijmm.2016.2499.

Downloads

Download data is not yet available.